Add like
Add dislike
Add to saved papers

Direct detection of dithiocarbamate fungicides by SALDI/MS using porous TiC ceramic powder as a substrate.

Dithiocarbamate fungicides (DTCs) have been widely used all over the world. Some of them show toxicities, such as growth toxicity and teratogenicity. Therefore, the analysis of DTCs in environments or crops is very significant. However, their direct and individual analysis was difficult, because most of them are metal complex compounds and have macromolecular properties and a low solubility in water or organic solvents. In the conventional analytical methods for DTCs, the total amount of DTCs was obtained by the quantification of the derivatives of the ligand or by measuring the carbon disulfide formed by the decomposition of the fungicides. Surface assisted laser desorption (SALDI)/MS can detect various compounds, such as metal complexes and macromolecules, present in a nanostructured substrate. The porous titanium carbide (TiC) ceramic powder shows adsorptive properties to various substances and can be used as a substrate for SALDI/MS. In this study, a method for the individual and direct detection of dithiocarbamate pesticides by SALDI/MS using porous TiC ceramics as a substrate has been developed. The dithiocarbamate fungicide was mixed with the porous TiC powder in a mortar, and the mixture was analyzed by SALDI/MS. The deprotonated ion of the ethylene-bis-dithiocarbamate complex, mancozeb or zineb, was detected in the negative ion mode. For the dimethyldithiocarbamate complexes, ferbam and ziram, the ion of the eliminated dithiocarbamate ligand was detected in the positive ion mode. Calibration curves by the present method for Manzeb showed good linearity by using an internal standard material. Based on these results, we concluded that this method is useful for the analysis of DTCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app