Add like
Add dislike
Add to saved papers

PCB-C 4 D coupled with paper-based microfluidic sampling for the rapid detection of liquid conductivity.

The detection of liquid electrical conductivity has board applications in food safety testing, water quality monitoring, and agricultural soil analysis. Electrodes used in traditional liquid electrical conductivity detection come into direct contact with liquid, leading to electrode contamination and affecting the accuracy of the detection results. The capacitively coupled contactless conductivity detection (C4 D) method effectively addresses this issue. However, impurity particles present in the solution can compromise the consistency and repeatability of detection results. This study combines paper-based microfluidic technology with printed circuit board-capacitively coupled contactless conductivity detection (PCB-C4 D) to address this issue. Prior to sample detection, in situ rapid filtration is employed to remove impurity particles from the raw solution sample, significantly enhancing detection consistency and reliability. Simultaneously, Optimization of PCB-C4 D parameters, channel size, filtration time, and solution drop rate ensures optimal detection conditions. A compact kit design facilitates reliable assembly of the PCB-C4 D electrodes and paper-based channel, enhancing practicality. Practical measurements on the conductivity of orange juice, cucumber, and soil solution further validate the method's accuracy, rapidity, and effectiveness in in situ conductivity detection. This work advances the practical application of PCB-C4 D technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app