Add like
Add dislike
Add to saved papers

Prediction of LncRNA-protein Interactions Using Auto-Encoder, SE-ResNet Models and Transfer Learning.

MicroRNA 2024 April 9
BACKGROUND: Long non-coding RNA (lncRNA) plays a crucial role in various biolog-ical processes, and mutations or imbalances of lncRNAs can lead to several diseases, including cancer, Prader-Willi syndrome, autism, Alzheimer's disease, cartilage-hair hypoplasia, and hear-ing loss. Understanding lncRNA-protein interactions (LPIs) is vital for elucidating basic cellular processes, human diseases, viral replication, transcription, and plant pathogen resistance. Despite the development of several LPI calculation methods, predicting LPI remains challenging, with the selection of variables and deep learning structure being the focus of LPI research.

METHODS: We propose a deep learning framework called AR-LPI, which extracts sequence and secondary structure features of proteins and lncRNAs. The framework utilizes an auto-encoder for feature extraction and employs SE-ResNet for prediction. Additionally, we apply transfer learning to the deep neural network SE-ResNet for predicting small-sample datasets.

RESULTS: Through comprehensive experimental comparison, we demonstrate that the AR-LPI ar-chitecture performs better in LPI prediction. Specifically, the accuracy of AR-LPI increases by 2.86% to 94.52%, while the F-value of AR-LPI increases by 2.71% to 94.73%.

CONCLUSION: Our experimental results show that the overall performance of AR-LPI is better than that of other LPI prediction tools.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app