Add like
Add dislike
Add to saved papers

Surfactant-assisted molecular-level tunning of phenol-formaldehyde-based hard carbon microspheres for high-performance sodium-ion batteries.

The phenol-formaldehyde (PF) resin is an economical precursor for spherical hard carbon (HC) anodes for sodium-ion batteries (SIBs). However, achieving precise molecular-level control of PF-based HC microspheres, particularly for optimizing ion transport microstructure, is challenging. Here, a sodium linoleate (SL)-assisted strategy is proposed to enable molecular-level engineering of PF-based HC microspheres. PF microspheres are synthesized through the polymerization of 3-aminophenol and formaldehyde, initially forming oxazine rings and then undergoing ring-opening polymerization to create a macromolecular network. SL functions as both a surfactant to control microsphere size and a catalyst to enhance ring-opening polymerization and increase polymerization of PF resin. These modifications lead to reduced microsphere diameter, increased interlayer spacing, enhanced graphitization, and significantly improved electron and ion transfer. The synthesized HC microspheres exhibit a remarkable reversible capacity of 337 mAh/g, maintaining 96.9 mAh/g even at a high current density of 5.0 A/g. Furthermore, the full cell demonstrates a high capacity of 150 mAh/g, an energy density of 125.3 Wh kg-1 , an impressive initial coulombic efficiency (ICE) of 930.3% at 1 A/g, and remarkable long-term stability over 3000 cycles. This study highlights the potential of surfactant-assisted molecular-level engineering in customizing HC microspheres for advanced SIBs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app