Add like
Add dislike
Add to saved papers

Nα-aroyl-N-aryl-phenylalanine amides: a promising class of antimycobacterial agents targeting the RNA polymerase.

Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) have also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app