Add like
Add dislike
Add to saved papers

Assessment of potentially toxic and mineral elements in paddy soils and their uptake by rice ( Oryza sativa L.) with associated health hazards in district Malakand, Pakistan.

Heliyon 2024 April 16
Rice, a primary food source in many countries of the world accumulate potentially harmful elements which pose a significant health hazard to consumers. The current study aimed to evaluate potentially toxic and mineral elements in both paddy soils and rice grains associated with allied health risks in Malakand, Pakistan. Rice plants with intact root soil were randomly collected from paddy fields and analyzed for mineral and potentially toxic elements (PTEs) through inductively coupled plasma optical emission spectrometry (ICP‒OES). Through deterministic and probabilistic risk assessment models, the daily intake of PTEs with allied health risks from consumption of rice were estimated for children and adults. The results of soil pH (< 8.5) and electrical conductivity (EC > 400 μs/cm), indicated slightly saline nature. The mean phosphorus concentration of 291.50 (mg/kg) in soil samples exceeded FAO/WHO permissible limits. The normalized variation matrix of soil pH with respect to Ni (0.05), Ca (0.05), EC (0.08), and Mg (0.09), indicated significant influence of pH on PTEs mobility. In rice grains, the mean concentrations (mg/kg) of Mg (463.81), Al (70.40), As (1.23), Cr (12.53), Cu (36.07), Fe (144.32), Mn (13.89), and Ni (1.60) exceeded FAO/WHO safety limits. The transfer factor >1 for K, Cu, P and Zn indicated bioavailability and transfer of these elements from soil to rice grains. Monte Carlo simulations of hazard index >1 for Cr, Zn, As, and Cu with certainties of 89.93% and 90.17%, indicated significant noncarcinogenic risks for children and adults from rice consumption. The total carcinogenic risk (TCR) for adults and children exceeded the USEPA acceptable limits of 1×10- 6 to 1×10- 4 , respectively. The sensitivity analysis showed that the ingestion rate was a key risk factor. Arsenic (As) primarily influenced total cancer risk (TCR) in children, while chromium (Cr) significantly impacted adults. Deterministic cancer risk values slightly exceeded probabilistic values due to inherent uncertainties in deterministic analysis. Rice consumption poses health risks, mainly from exposure to Cr, Ni and As in the investigated area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app