Add like
Add dislike
Add to saved papers

NPAS2, transcriptionally activated by ARRB1, promotes the malignant behaviours of lung adenocarcinoma cells and regulates the reprogramming of glucose metabolism.

Lung adenocarcinoma (LUAD) is a serious threat to public health and is accompanied by increased morbidity and mortality worldwide. Neuronal PAS domain protein2 (NPAS2) has been confirmed as an oncogene in LUAD; however, little is known about its molecular mechanism. Here, the expression level of NPAS2 was detected in LUAD cell lines and 16HBE cells. Gain- and loss-of-function experiments were performed. Cell Counting Kit-8, colony formation, flow cytometry, wound-healing and Transwell assays were conducted to assess cell proliferation, apoptosis, migration and invasion, respectively. Reprogramming of glucose metabolism was evaluated via oxygen consumption rate (OCR), complexes activities, lactic production and glucose consumption. The expression of critical proteins was examined by western blot. We demonstrated aberrant upregulation of NPAS2 and β-arrestin-1 (ARRB1) in LUAD cell lines. ARRB1 was found to be a critical transcription factor of NPAS2 with binding sites within the promoter region of NPAS2, thereby causing its transcriptional activation. Functional experiments revealed that NPAS2 depletion significantly inhibited the malignant behaviours of A549 cells by suppressing cell proliferation, migration, invasion and epithelial-mesenchymal transition and promoting cell apoptosis. Meanwhile, NPAS2 depletion increased OCR and activities of complexes (I, II, III and V), and reduced lactic acid production and glucose uptake in A549 cells, indicating that NPAS2 depletion inhibited aerobic glycolysis, accompanied by reduced expression of glycolytic enzymes. However, the changes caused by NPAS2 knockdown were partly restored by ARRB1 overexpression. In conclusion, our study suggests that ARRB1 could transcriptionally activate NPAS2, facilitating malignant activities and glycolysis, and ultimately promoting the progression of LUAD, proving a novel therapeutic strategy for the treatment of LUAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app