Add like
Add dislike
Add to saved papers

Er 3+ /Yb 3+ /Ho 3+ tri-doped no-core fiber temperature sensor based on fluorescence intensity ratio technology: towards high stability and accurate measurements.

Applied Optics 2024 April 2
In this paper, the green upconversion (UC) fluorescence emission from E r 3+ / Y b 3+ / H o 3+ tri-doped tellurite glass is investigated for temperature sensing. The doping of H o 3+ ions not only enhances the chance of energy level transition but also avoids the influence of the thermal effect caused by the proximity of 2 H 11/2 and 4 S 3/2 energy levels. The luminescence characteristics at different Y b 3+ and H o 3+ ion concentration doping molar ratios were investigated, and the strongest luminescence characteristics were exhibited when the Y b 3+ ion concentration was at 5 mol% and H o 3+ at 0.2 mol%. Based on this, a tri-doped T e O 2 - Z n O - B i 2 O 3 (TZB) no-core fiber was fabricated and connected with multimode fibers (MMFs) to form a temperature sensor. The temperature sensing performance of the tri-doped TZB temperature sensor was evaluated in detail over the temperature range of 255-365 K. The repeatability and stability of the temperature sensor was experimentally verified. The E r 3+ / Y b 3+ / H o 3+ tri-doped sensor can be used for noninvasive optical temperature sensing in the fields of environmental monitoring, biological sensing, and industrial process temperature control, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app