Add like
Add dislike
Add to saved papers

Mitochondrial Calcium Uniporter (MCU) is Involved in an Ischemic Postconditioning Effect Against Ischemic Reperfusion Brain Injury in Mice.

The phenomenon of ischemic postconditioning (PostC) is known to be neuroprotective against ischemic reperfusion (I/R) injury. One of the key processes in PostC is the opening of the mitochondrial ATP-dependent potassium (mito-KATP ) channel and depolarization of the mitochondrial membrane, triggering the release of calcium ions from mitochondria through low-conductance opening of the mitochondrial permeability transition pore. Mitochondrial calcium uniporter (MCU) is known as a highly sensitive transporter for the uptake of Ca2+ present on the inner mitochondrial membrane. The MCU has attracted attention as a new target for treatment in diseases, such as neurodegenerative diseases, cancer, and ischemic stroke. We considered that the MCU may be involved in PostC and trigger its mechanisms. This research used the whole-cell patch-clamp technique on hippocampal CA1 pyramidal cells from C57BL mice and measured changes in spontaneous excitatory post-synaptic currents (sEPSCs), intracellular Ca2+ concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents under inhibition of MCU by ruthenium red 265 (Ru265) in PostC. Inhibition of MCU increased the occurrence of sEPSCs (p = 0.014), NMDAR currents (p < 0.001), intracellular Ca2+ concentration (p < 0.001), and dead cells (p < 0.001) significantly after reperfusion, reflecting removal of the neuroprotective effects in PostC. Moreover, mitochondrial depolarization in PostC with Ru265 was weakened, compared to PostC (p = 0.004). These results suggest that MCU affects mitochondrial depolarization in PostC to suppress NMDAR over-activation and prevent elevation of intracellular Ca2+ concentrations against I/R injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app