Add like
Add dislike
Add to saved papers

Methacrylated gelatin and platelet-rich plasma based hydrogels promote regeneration of critical-sized bone defects.

Physiological repair of large-sized bone defects requires instructive scaffolds with appropriate mechanical properties, biocompatibility, biodegradability, vasculogenic ability and osteo-inductivity. The objective of this study was to fabricate in situ injectable hydrogels using platelet-rich plasma (PRP)-loaded gelatin methacrylate (GM) and employ them for the regeneration of large-sized bone defects. We performed various biological assays as well as assessed the mechanical properties of GM@PRP hydrogels alongside evaluating the release kinetics of growth factors (GFs) from hydrogels. The GM@PRP hydrogels manifested sufficient mechanical properties to support the filling of the tissue defects. For biofunction assay, the GM@PRP hydrogels significantly improved cell migration and angiogenesis. Especially, transcriptome RNA sequencing of human umbilical vein endothelial cells and bone marrow-derived stem cells were performed to delineate vascularization and biomineralization abilities of GM@PRP hydrogels. The GM@PRP hydrogels were subcutaneously implanted in rats for up to 4 weeks for preliminary biocompatibility followed by their transplantation into a tibial defect model for up to 8 weeks in rats. Tibial defects treated with GM@PRP hydrogels manifested significant bone regeneration as well as angiogenesis, biomineralization, and collagen deposition. Based on the biocompatibility and biological function of GM@PRP hydrogels, a new strategy is provided for the regenerative repair of large-size bone defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app