Read by QxMD icon Read

Regenerative Biomaterials

Jiayuan Tang, Jinlin Chen, Jing Guo, Qingrong Wei, Hongsong Fan
Konjac glucomannan (KGM) is recognized as a safe material for its health-promoting benefits and thus widely used in various fields including pharmaceutical industry. In recent decades, the combination of collagen and KGM attracts more attentions for biomedical purpose, especially the hybrid films of collagen-KGM or collagen-KGM-polysaccharide. In this study, to further and deeply develop the intrinsic values of both collagen and KGM as biomaterials, a novel kind of composite hydrogel comprising collagen and KGM at a certain ratio was fabricated under mild conditions via fibrillogenesis process of the aqueous blends of collagen and KGM that experienced deacetylation simultaneously...
August 2018: Regenerative Biomaterials
Xing Yang, Yuanyuan Li, Xujie Liu, Qianli Huang, Ranran Zhang, Qingling Feng
The development of bone tissue engineering scaffolds still remains a challenging field, although various biomaterials have been developed for this purpose. Electrospinning is a promising approach to fabricate nanofibers with an interconnected porous structure, which can support cell adhesion, guide cell proliferation and regulate cell differentiation. The aim of this study is to fabricate composite fibers composed of poly(lactic-co-glycolic acid) (PLGA) and silica nanoparticles (NPs) via electrospinning and investigate the effect of PLGA/SiO2 composite fibers on the cellular response of osteoblast-like cells (SaOS-2 cells)...
August 2018: Regenerative Biomaterials
Jia Wei, Hufei Qian, Yu Liu, Jiangang Liu, Rui Zhao, Xiao Yang, Xiangdong Zhu, Ruoping Chen, Xingdong Zhang
This work aimed at investigating the possibility and effectiveness of osteoinductive calcium phosphate (CaP) ceramics to close the drilled skull holes and prevent the postoperative cerebrospinal fluid (CSF) leaking in children's endoscopic neurosurgery. Five children patients (four boys and one girl, 3- to 8-years old) underwent the surgery, in which the endoscopic third ventriculostomy (ETV) was operated in four cases of hydrocephalus, and biopsy and ETV were both performed in one case of pineal tumor. The drilled skull holes were filled with the commercial osteoinductive CaP ceramics...
August 2018: Regenerative Biomaterials
Jing Zhang, Yang Chen, Jing Xu, Jingjing Wang, Chengzhang Li, Liyan Wang
The purposes of this study were to construct a novel tissue engineered bone composed of 3D-printed bioactive glass block/chitosan nanoparticles (BD/CSn) composites loaded with Nel-like Type I molecular-1 DNA (pDNA-NELL1) and/or bone marrow mesenchymal stem cells (BMSCs), and study their osteogenic activities by repairing bone defects in rhesus monkeys. CSn with NELL1 gene plasmid and rhesus monkey BMSCs were composited with a BD scaffold to prepare the tissue-engineered bone. Four adult female rhesus monkeys with 10- to 12-years old and 5-7 kg in weight were used in animal experiments...
August 2018: Regenerative Biomaterials
Tinke-Marie De Witte, Lidy E Fratila-Apachitei, Amir A Zadpoor, Nicholas A Peppas
In recent years, bone tissue engineering has emerged as a promising solution to the limitations of current gold standard treatment options for bone related-disorders such as bone grafts. Bone tissue engineering provides a scaffold design that mimics the extracellular matrix, providing an architecture that guides the natural bone regeneration process. During this period, a new generation of bone tissue engineering scaffolds has been designed and characterized that explores the incorporation of signaling molecules in order to enhance cell recruitment and ingress into the scaffold, as well as osteogenic differentiation and angiogenesis, each of which is crucial to successful bone regeneration...
August 2018: Regenerative Biomaterials
Ioannis V Yannas
This is a historical account of the steps, both serendipitous and rational, that led my group of students and colleagues at MIT and Harvard Medical School to discover induced organ regeneration. Our research led to methods for growing back in adult mammals three heavily injured organs, skin, peripheral nerves and the conjunctiva. We conclude that regeneration in adults is induced by a modification of normal wound healing.
August 2018: Regenerative Biomaterials
Ying Chen, Jing Wang, Xiangdong Zhu, Xuening Chen, Xiao Yang, Kai Zhang, Yujiang Fan, Xingdong Zhang
Osteoinductivity of porous calcium phosphate (CaP) ceramics has been widely investigated and confirmed, and it might be attributed to the rapid formation of the vascular networks after in vivo implantation of the ceramics. In this study, to explore the vascularization mechanism within the CaP ceramics, the migration and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) under the stimulation of porous biphasic calcium phosphate (BCP) ceramic with excellent osteoinductivity were systematically investigated...
June 2018: Regenerative Biomaterials
Samad Ahadian, Ali Khademhosseini
Recent advances in biofabrication technologies and chemical synthesis approaches have enabled the fabrication of smart scaffolds that aim to mimic the dynamic nature of the native extracellular matrix. These scaffolds have paved the way for tissue regeneration in a dynamic and controllable manner.
June 2018: Regenerative Biomaterials
Jinxuan Wang, Xuepu Jin, Yuhua Huang, Xiaolin Ran, Desha Luo, Dongchuan Yang, Dongyu Jia, Kang Zhang, Jianhua Tong, Xiaoyan Deng, Guixue Wang
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation...
June 2018: Regenerative Biomaterials
Anna K Whitehead, Haley H Barnett, Mary E Caldorera-Moore, Jamie J Newman
Coordinated investigations into the interactions between biologically mimicking (biomimetic) material constructs and stem cells advance the potential for the regeneration and possible direct replacement of diseased cells and tissues. Any clinically relevant therapies will require the development and optimization of methods that mass produce fully functional cells and tissues. Despite advances in the design and synthesis of biomaterial scaffolds, one of the biggest obstacles facing tissue engineering is understanding how specific extracellular cues produced by biomaterial scaffolds influence the proliferation and differentiation of various cell sources...
June 2018: Regenerative Biomaterials
Bao Li, Yongli Gao, Likun Guo, Yujiang Fan, Naoki Kawazoe, Hongsong Fan, Xingdong Zhang, Guoping Chen
Photo-reactive poly(vinyl alcohol) (PRPVA) was synthesized by introduction of phenyl azido groups into poly(vinyl alcohol) (PVA) and applied for surface modification. PRPVA was grafted onto cell culture plate surface homogeneously or in a micropattern. Human mesenchymal stem cells (hMSCs) cultured on cell culture plate surface and PVA-modified surface showed different behaviors. Cells adhered and spread well on cell culture plate surface, while they did not adhere on PVA-grafted surface at all. When hMSCs were cultured on PVA-micropatterned surface, they formed a cell micropattern...
June 2018: Regenerative Biomaterials
Xiaojie Lian, Shichao Liu, Liming Liu, Rui Xu, Miaomiao Du, Song Wang, Hesun Zhu, Qiang Lu, Quanyou Zhang, Yali Wu, Di Huang, Yan Wei
With the development of biomaterials, more attention is paid to the adhesion characteristics between cells and materials. It is necessary to study the adhesive force with a suitable method. Silk fibroin (SF) is widely investigated in biomedical application due to its novel biocompatibility and mechanical properties. In this article, the micropipette aspiration method and measurement pattern of uniform cells in round shape (UCR) was used to study the initial adhesive force of three types of cells on pure silk fibroin films (SFFs)...
June 2018: Regenerative Biomaterials
Taipeng Shen, Wencheng Zhu, Li Yang, Li Liu, Rongrong Jin, Jimei Duan, James M Anderson, Hua Ai
Dendritic cell (DC)-based vaccines have shown promising therapeutic results in cancer and some immune disorders. It is critical to track in vivo migration behaviours of DCs and monitor the whole process dynamically and non-invasively. Superparamagnetic iron oxide (SPIO) nanoparticles are chosen for DC labelling under magnetic resonance imaging (MRI) because of their proven biosafety as contrast agents. However, when used for cell labelling, sensitive biological indicators such as cell autophagy may be helpful to better understand the process and improve the probe design...
June 2018: Regenerative Biomaterials
Ke Zhang, Yubo Fan, Nicholas Dunne, Xiaoming Li
Microporosity has a critical role in improving the osteogenesis of scaffolds for bone tissue engineering. Although the exact mechanism, by which it promotes new bone formation, is not well recognized yet, the related hypothesis can be found in many previous studies. This review presents those possible mechanisms about how the microporosity enhances the osteogenic-related functions of cells in vitro and the osteogenic activity of scaffolds in vivo . In summary, the increased specific surface areas by microporosity can offer more protein adsorption sites and accelerate the release of degradation products, which facilitate the interactions between scaffolds and cells...
March 2018: Regenerative Biomaterials
Jingchen Gao, Li Jiang, Qinge Liang, Jie Shi, Ding Hou, Di Tang, Siyuan Chen, Deling Kong, Shufang Wang
Small-diameter (<6 mm) vascular grafts are increasingly needed in peripheral vascular surgery but have few successes because of acute thrombosis, incomplete endothelialization and intimal hyperplasia after implantation. This study used electrospun poly(ε-caprolactone) as the matrix material. Heparin and selenium-containing catalyst-organoselenium modified polyethyleneimine were introduced through layer-by-layer assembly in order to build a vascular graft with in situ nitric oxide (NO) generation. The aim of this study was to explore the application of the graft with improved histocompatibility and biological function for vascular implantation in rats...
March 2018: Regenerative Biomaterials
Xiaoyu Sun, Wen Su, Xiaomin Ma, Huaiying Zhang, Zhe Sun, Xudong Li
Collagen (COL), collagen/hydroxyapatite (COL/HA), HA and biphasic calcium phosphate were prepared as representative bone grafting materials with composition analogous to bone, and their structural characteristics were analyzed. The rat bone mesenchymal stem cells (BMSCs) were further seeded onto four groups of materials, and BMSCs grown in basic medium and standard osteogenic medium were set as controls of a reference model to show the basic and osteogenic behavior of cells without the intervention of materials...
March 2018: Regenerative Biomaterials
Dmitry Labutin, Konstantin Vorobyov, Svetlana Bozhkova, Ekaterina Polyakova, Tatyana Vodopyanova
Human bone allografts present a better alternative to autografts in terms of minimization of the harvesting procedure complications. Prior to the use in clinical applications, they require sterilization which aims to reduce bioburden. This often comes at the expense of their biological properties as carriers of cells. In this study, we evaluated the cytocompatibility of human bone allografts processed and sterilized by three different methods with mesenchymal stromal cells. Bone morphology, biological and biochemical properties of the extracted bone-conditioned medium and viability of cells were assessed...
March 2018: Regenerative Biomaterials
Simon Spalthoff, Rüdiger Zimmerer, Jan Dittmann, Horst Kokemüller, Marco Tiede, Laura Flohr, Philippe Korn, Nils-Claudius Gellrich, Philipp Jehn
Osseous reconstruction of large bone defects remains a challenge in oral and maxillofacial surgery. In addition to autogenous bone grafts, which despite potential donor-site mobility still represent the gold standard in reconstructive surgery, many studies have investigated less invasive alternatives such as in vitro cultivation techniques. This study compared different types of seeding techniques on pure β-tricalcium phosphate scaffolds in terms of bone formation and ceramic resorption in vivo . Cylindrical scaffolds loaded with autologous cancellous bone, venous blood, bone marrow aspirate concentrate or extracorporeal in vitro cultivated bone marrow stromal cells were cultured in sheep on a perforator vessel of the musculus latissimus dorsi over a 6-month period...
March 2018: Regenerative Biomaterials
Qian Ren, Zhongcheng Li, Longjiang Ding, Xiuqing Wang, Yumei Niu, Xi Qin, Xuedong Zhou, Linglin Zhang
In this study, we have designed a more clinically powerful anti-caries treatment by applying the amelogenin-derived peptide QP5 to the antibacterial carrier material chitosan in a hydrogel (CS-QP5 hydrogel), and characterized its effects on the inhibition of a cariogenic biofilm and the promotion of the remineralization of the initial caries lesions. The results indicated that the CS-QP5 hydrogel sustainably inhibited the growth of the Streptococcus mutans biofilm, lactic acid production and the metabolic activity over a prolonged period of time...
March 2018: Regenerative Biomaterials
Yong-Xiong Pan, Guang-Gang Yang, Zhong-Wan Li, Zhong-Min Shi, Zhan-Dong Sun
This study investigated clinical outcomes of biomimetic mineralized collagen artificial bone putty for bone reconstruction in the treatment of calcaneus fracture. Sixty cases of calcaneal fractures surgically treated with open reduction and internal fixation in our hospital from June 2014-2015 were chosen and randomly divided into two groups, including 30 cases treated with biomimetic mineralized collagen artificial bone putty as treatment group, and 30 cases treated with autogenous ilia as control group. The average follow-up time was 17...
March 2018: Regenerative Biomaterials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"