Add like
Add dislike
Add to saved papers

Hydrochemical characterization and assessment of health risks of trace elements in the Huai River Basin of China.

Basin water pollution is a global problem, especially in the densely populated areas. The Huai River Basin (abbreviated as HRB), including the Huai River system and the Yishu River system, is the sixth-largest and most densely populated watershed in China. However, there is a lack of comprehensive studies of river and well water throughout the Huai River basin, including hydrochemistry characterization and assessment of health risks. This study investigated water quality and pollution sources of river and well water in the HRB based on the hydrochemistry analysis and different water quality indices. The water body in the HRB showed weak alkalinity (pH = 8.4 ± 0.7) and had high TDS values (TDS = 339 ± 186 mg/L) with water types of HCO3 -Ca-Mg and SO4 -Cl-Ca-Mg in the Huai River system, and SO4 -Cl-Ca-Mg in the Yishu River system. Atmospheric input and evaporation had less impact on hydrochemistry. Evaporite dissolution and carbonate weathering had a greater impact on hydrochemistry. Carbonate precipitation and cation exchange also influenced the dissolved solutes, especially Ca2+ and Na+ . Samples had low to medium salinity hazards and sodium absorption ratios and were suitable for irrigation. For drinking purposes, samples were fresh water and have good or excellent according to the Water Quality Index (WQI). Land use types influenced water quality with the worst river water quality from cropland. Combining different assessment indices, the water quality of the Yishu River system performed better than the Huai River system. Absolute principal component analysis-multiple linear regression and the positive matrix factorization models identified the main pollutants as As, Ba, Cr, Ni, and Mn, with natural sources of As, Ba, and Ni and anthropogenic inputs of Cr, and Mn. Although the water quality of the HRB has improved in recent years, high potential risk from As, Cr, Mn, Ba, and Ni should be noted. This study provided vital information for basin hydrochemistry analysis and water quality assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app