Add like
Add dislike
Add to saved papers

Quantitative analysis of the morphing wing mechanism of raptors: Bionic design of Falco Peregrinus wing skeleton.

The wing is one of the most important parts of a bird's locomotor system and is the inspiration origination for bionic wing design. During wing motions, the wing shape is closely related to the rotation angles of wing bones. Therefore, the research on the law of bone movement in the process of wing movement can be good guidance for the design of the bionic morphing wing. In this paper, the skeletal posture of the peregrine falcon wing during the extension/flexion is studied to obtain critical data on skeletal posture. Since an elbow joint and a wrist joint rotate correlatively to drive a wing to flex/extend, the wing skeleton is simplified as a four-bar mechanism in this paper. The degree of reproduction of wing skeleton postures was quantitatively analyzed using the four-bar mechanism model, and the bionic wing skeleton was designed. It is found that the wing motions have been reproduced with high precision.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app