Add like
Add dislike
Add to saved papers

Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds.

Cultured meat is a meat analogue produced by in vitro cell culture, which can replace the conventional animal production system. Tissue engineering using myogenic cells and biomaterials is a core technology for cultured meat production. In this study, we provide an efficient and economical method to produce skeletal muscle tissue-like structures by culturing chicken myoblasts in a fetal bovine serum (FBS)-free medium and plant-derived scaffolds. An FBS-free medium supplemented with 10% horse serum (HS) and 5% chick embryo extract (CEE) was suitable for the proliferation and differentiation of chicken myoblasts. Decellularized celery scaffolds (Decelery), manufactured using 1% sodium dodecyl sulfate (SDS), were nontoxic to cells and supported myoblast proliferation and differentiation. Decelery could support the 3D culture of chicken myoblasts, which could adhere and coagulate to the surface of the Decelery and form MYH1E+ and F-actin+ myotubes. After 2 weeks of culture on Decelery, fully grown myoblasts completely covered the surface of the scaffolds and formed fiber-like myotube structures. They further differentiated to form spontaneously contracting myofiber-like myotubes on the scaffold surface, indicating that the Decelery scaffold system could support the formation of a functional mature myofiber structure. In addition, as the spontaneously contracting myofibers did not detach from the surface of the Decelery, the Decelery system is a suitable biomaterial for the long-term culture and maintenance of the myofiber structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app