Journal Article
Review
Add like
Add dislike
Add to saved papers

Fucosylated human milk oligosaccharide-utilizing bifidobacteria regulate the gut organic acid profile of infants.

Bifidobacteria are the predominant bacteria in the infant gut and have beneficial effects on host physiology. Infant cohort studies have demonstrated that a higher abundance of bifidobacteria in the gut is associated with a reduced risk of disease. Recently, bifidobacteria-derived metabolites, such as organic acid, have been suggested to play crucial roles in host physiology. This review focuses on an investigation of longitudinal changes in the gut microbiota and organic acid concentrations over 2 years of life in 12 Japanese infants and aims to identify bifidobacteria that contribute to the production of organic acid in healthy infants. Acetate, lactate, and formate, which are rarely observed in adults, are characteristically observed during breast-fed infancy. Bifidobacterium longum subspecies infantis and the symbiosis of Bifidobacterium bifidum and Bifidobacterium breve efficiently produce these organic acids through metabolization of human milk oligosaccharide (HMO) with different strategies. These findings confirmed that HMO-utilizing bifidobacteria play an important role in regulating the gut organic acid profiles of infants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app