Add like
Add dislike
Add to saved papers

Reendothelialization of acellular adipose flaps under mimetic physiological dynamic conditions.

The extensive soft tissue defects resulting from trauma and tumors pose a prevalent challenge in clinical practice, characterized by a high incidence rate. Autologous tissue flap transplantation, considered the gold standard for treatment, is associated with various drawbacks, including the sacrifice of donor sources, postoperative complications, and limitations in surgical techniques, thereby impeding its widespread applicability. The emergence of tissue-engineered skin flaps, notably the acellular adipose flap (AAF), offers potential alternative solutions. However, a critical concern confronting large-scale tissue-engineered skin flaps currently revolves around the reendothelialization of internal vascular networks. In our study, we have developed an AAF utilizing perfusion decellularization, demonstrating excellent physical properties. Cytocompatibility experiments have confirmed its cellular safety, and cell adhesion experiments have revealed spatial specificity in facilitating endothelial cells adhesion within the adipose flap scaffold. Employing a novel mimetic physiological fluid shear stress setting, endothelial cells were dynamically inoculated and cultured within the acellular vascular network of the pedicled AAF in our research. Histological and gene expression analyses have shown that the mimetic physiological fluid dynamic model significantly enhanced the reendothelialization of the AAF. This innovative platform of acellular adipose biomaterials combined with hydrodynamics may offer valuable insights for the design and manufacturing of 3D vascularized tissue constructs, which can be applied to the repair of extensive soft tissue defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app