Add like
Add dislike
Add to saved papers

Mechanical Effects of Medical Device Attachment to Human Tympanic Membrane.

PURPOSE: Several treatment methods for hearing disorders rely on attaching medical devices to the tympanic membrane. This study aims to systematically analyze the effects of the material and geometrical properties and location of the medical devices attached to the tympanic membrane on middle-ear vibrations.

METHODS: A finite-element model of the human middle ear was employed to simulate the effects of attachment of medical devices. Various types of material and geometrical properties, locations, and modeling scenarios were investigated for the medical device.

RESULTS: The attachment of the device magnifies the effects of anti-resonances of the middle ear. Additionally, the variations of the material properties of the device significantly alter the middle-ear resonance frequency while changes in the umbo and stapes footplate motions are negligible at frequencies above 5 kHz. Furthermore, modeling the device as a point mass cannot accurately represent the implanted middle-ear behavior. The variations of the diameter and height of the medical device have negligible effects on the middle-ear vibrations at frequencies below 200 Hz but can have considerable impacts at higher frequencies. The effects of changing the device height were negligible at frequencies above 2 kHz. We also discuss the effects of medical device attachment on the vibration patterns of the tympanic membrane as well as the impacts of the variations of the location of the device on the stapes footplate responses.

CONCLUSION: The findings of our study aid the development and optimization of new therapeutic devices, attached to the tympanic membrane, to have the least adverse effects on middle-ear vibrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app