Add like
Add dislike
Add to saved papers

Copper-based metal-organic frameworks (BDC-Cu MOFs) as supporters for α-amylase: Stability, reusability, and antioxidant potential.

Heliyon 2024 March 31
Copper-based metal-organic frameworks (BDC-Cu MOFs) were synthesized via a casting approach using 1,4-benzene dicarboxylic (BDC) as organic ligand and their properties characterized. The obtained materials were then utilized to immobilize the α-amylase enzyme. The chemical composition and functional components of the synthesized support (BDC-Cu MOFs) were investigated with Fourier transform infrared spectroscopy (FTIR), the surface morphology was determined with scanning electron microscopy (SEM), and the elemental composition was established with energy dispersive X-ray (EDX) analyses. X-ray diffraction (XRD) was employed to analyze the crystallinity of the synthesized DBC-Cu MOFs. The zeta potentials of DBC-Cu MOFs and DBC-Cu MOFs@α-amylase were determined. The immobilized α-amylase demonstrated improved catalytic activity and reusability compared to the free form. Covalent attachment of the α-amylase to BDC-Cu provided an immobilization yield (IY%) of 81% and an activity yield (AY%) of 89%. The immobilized α-amylase showed high catalytic activity and 81% retention even after ten cycles. Storage at 4 °C for eight weeks resulted in a 78% activity retention rate for DBC-Cu MOFs@α-amylase and 49% retention for the free α-amylase. The optimum activity occurred at 60 °C for the immobilized form, whereas the free form showed optimal activity at 50 °C. The free and immobilized α-amylase demonstrated peak catalytic activities at pH 6.0. The maximum reaction velocities (Vmax) values were 0.61 U/mg of protein for free α-amylase and 0.37 U/mg of protein for BDC-Cu MOFs@α-amylase, while the Michaelis‒Menten affinity constants (Km) value was lower for the immobilized form (5.46 mM) than for the free form (11.67 mM). Treatments of maize flour and finger millet samples with free and immobilized α-amylase resulted in increased total phenolic contents. The enhanced antioxidant activities of the treated samples were demonstrated with decreased IC50 values in ABTS and DPPH assays. Overall, immobilization of α-amylase on BDC-Cu MOFs provided improved stability and catalytic activity and enhanced the antioxidant potentials of maize flour and finger millet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app