Add like
Add dislike
Add to saved papers

Numerical Simulation Study on Combustion of Low Calorific Value Waste Blended with Biomass.

ACS Omega 2024 March 27
Numerical simulations of a 600 t/day waste incinerator was carried out using the fluid dynamic incinerator code and Fluent to evaluate the effect of biomass blending on furnace temperature, pollutant generation, and selective noncatalytic-reduction (SNCR) denitrification when treating low calorific-value waste. The results show that as the biomass blending ratio increases, the water content gradually decreases, the calorific value increases, and the maximum temperature of the incinerator gradually increases from 1227 to 1408 K, while the content of exported NO x increases from 579 to 793 mg/Nm3 ; during the combustion of low-quality waste, the residence time of the flue gas in the high-temperature region (above 1123 K) is 1.62 s. When the biomass blending ratio exceeds 20%, the residence time of the flue gas in the high-temperature region is more than 2 s, which can effectively curb the generation of dioxin. When the biomass blending ratio is 20%, and the normalized stoichiometric ratio (2 n urea / n NO ) of urea injected into the SNCR is 1.1, the NO x concentration at the outlet is 230.08 mg/Nm3 , which satisfies the NO x emission standard of less than 250 mg/Nm3 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app