Add like
Add dislike
Add to saved papers

Stabilizing the Catalyst Layer for Durable and High Performance Alkaline Membrane Fuel Cells and Water Electrolyzers.

ACS Central Science 2024 March 28
Anion exchange membrane (AEM) fuel cells (AEMFCs) and water electrolyzers (AEMWEs) suffer from insufficient performance and durability compared with commercialized energy conversion systems. Great efforts have been devoted to designing high-quality AEMs and catalysts. However, the significance of the stability of the catalyst layer has been largely disregarded. Here, an in situ cross-linking strategy was developed to promote the interactions within the catalyst layer and the interactions between catalyst layer and AEM. The adhesion strength of the catalyst layer after cross-linking was improved 7 times compared with the uncross-linked catalyst layer due to the formation of covalent bonds between the catalyst layer and AEM. The AEMFC can be operated under 0.6 A cm-2 for 1000 h with a voltage decay rate of 20 μV h-1 . The related AEMWE achieved an unprecedented current density of 15.17 A cm-2 at 2.0 V and was operated at 0.5, 1.0, and 1.5 A cm-2 for 1000 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app