Add like
Add dislike
Add to saved papers

Analyzing of hydrodynamic stress and mass transfer requirements of a fermentation process carried out in a coaxial bioreactor: a scale-up study.

Fluid hydrodynamic stress has a deterministic effect on the morphology of filamentous fungi. Although the coaxial mixer has been recognized as a suitable gas dispersion system for minimizing inhomogeneities within a bioreactor, its performance for achieving enhanced oxygen transfer while operating at a reduced shear environment has not been investigated yet, specifically upon scale-up. Therefore, the influence of the impeller type, aeration rate, and central impeller retrofitting on the efficacy of an abiotic coaxial system containing a shear-thinning fluid was examined. The aim was to assess the hydrodynamic parameters, including stress, mass transfer, bubble size, and gas hold-up, upon conducting a scale-up study. The investigation was conducted through dynamic gassing-in, tomography, and computational fluid dynamics combined with population balance methods. It was observed that the coaxial bioreactor performance was strongly influenced by the agitator type. In addition, coaxial bioreactors are scalable in terms of shear environment and oxygen transfer rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app