Add like
Add dislike
Add to saved papers

Discovery and characterization of l-DOPA 2,3-dioxygenase from Streptomyces hygroscopicus jingganensis.

The largest natural reservoir of untapped carbon can be found in the cell-wall strengthening, plant woody-tissue polymer, lignin - a polymer of catechols or 1,2-dihydroxybenzene monomers. The catecholic carbon of lignin could be valorized into feedstocks and natural products by way of catabolic and biosynthetic transformations, including the oxygen-dependent cleavage reaction of extradiol dioxygenase (EDX) enzymes. The EDX l-DOPA 2,3-dioxygenase was first discovered as part of a biosynthetic gene cluster to the natural product antibiotic, lincomycin, and also contributes to the biosyntheses of anthramycin, sibiromycin, tomaymycin, porothramycin and hormaomycin. Using these l-DOPA 2,3-dioxygenases as a starting point, we searched sequence space in order to identify new sources of dioxygenase driven natural product diversity. A "vicinal-oxygen-chelate (VOC) family protein" from Streptomyces hygroscopicus jingganensis was identified using bioinformatic methods and biochemically investigated for dioxygenase activity against a suite of natural and synthetic catechols. Steady-state oxygen consumption assays were used to screen and identify substrates, and a steady-state kinetic model of oxygen consumption was developed to evaluate activity of the S. hygroscopicus jingganensis VOC-family-protein with respect to activity of l-DOPA 2,3-dioxygenases from Streptomyces lincolnensis and Streptomyces sclerotialus. Lastly, these data were integrated with steady-state kinetic methods to observe the formation of the EDX cleavage product with UV-visible spectroscopy. The genomic context and enzymatic activity of the S. hygroscopicus jingganensis VOC family protein are consistent with a l-DOPA 2,3-dioxygenase contained within a cryptic biosynthetic pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app