Add like
Add dislike
Add to saved papers

Predicting potential therapeutic targets and small molecule drugs for early-stage lung adenocarcinoma.

Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) constituting the majority, and its main subtype being lung adenocarcinoma (LUAD). Despite substantial advances in LUAD diagnosis and treatment, early diagnostic biomarkers inadequately fulfill clinical requirements. Thus, we conducted bioinformatics analysis to identify potential biomarkers and corresponding therapeutic drugs for early-stage LUAD patients. Here we identified a total of 10 differentially expressed genes (DEGs) with survival significance through the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Subsequently, we identified a promising small molecule drug, Aminopurvalanol A, based on the 10 key genes using the L1000FWD application, which was validated by molecular docking followed by in vivo and in vitro experiments. The results highlighted TOP2A, CDH3, ASPM, CENPF, SLC2A1, and PRC1 as potential detection biomarkers for early LUAD. We confirmed the efficacy and safety of Aminopurvalanol A, providing valuable insights for the clinical management of LUAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app