Add like
Add dislike
Add to saved papers

Influence of para-substituted benzaldehyde derivatives with different push/pull electron strength groups on the conformation of human serum albumin and toxicological effects in zebrafish.

Excessive intake of benzaldehyde and its derivatives can cause irreversible damage to living organisms. Hence, benzaldehyde derivatives with different para-substitutions of push/pull electronic groups were chosen to investigate the effect of different substituent properties on the structure of human serum albumin (HSA). The binding constants, number of binding sites, major interaction forces, protein structural changes, and binding sites of benzaldehyde (BzH) and its derivatives (4-BzHD) with HSA in serum proteins were obtained based on multispectral and molecular docking techniques. The mechanism of BzH/4-BzHD interaction on HSA is mainly static quenching and is accompanied by the formation of a ground state complex. BzH/4-BzHD is bound to HSA in a 1:1 stoichiometric ratio. The interaction forces for the binding of BzH/4-BzHD to HSA are mainly hydrogen bonding and hydrophobic interaction, which are also accompanied by a small amount of electrostatic interactions. The effect of BzH/4-BzHD on HSA conformation follows: 4-Diethylaminobenzaldehyde (4-DBzH) > 4-Nitrobenzaldehyde (4-NBzH) > 4-Hydroxybenzaldehyde (4-HBzH) > 4-Acetaminobenzaldehyde (4-ABzH) > BzH, which means that the stronger push/pull electronic strength of the para-substituted benzaldehyde derivatives has a greater effect on HSA conformation. Furthermore, the concentration-lethality curves of different concentrations for BzH/4-BzHD on zebrafish verified above conclusion. This work provides a scientific basis for the risk assessment of benzaldehyde and its derivatives to the ecological environment and human health and for the environmental toxicological studies of benzaldehyde derivatives with different strengths of push/pull electron substitution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app