Add like
Add dislike
Add to saved papers

Remediation of phenanthrene by highly efficient CdS-SnS photocatalyst and its cytotoxic assessments.

Chemosphere 2024 March 29
Cadmium sulfide-tin sulfide (CdS-SnS) nanoparticles are a novel kind of photocatalyst. These CdS-SnS nanoparticles are synthesized and characterized using UV-Vis, FT-IR, XRD, SEM-EDX, and DLS techniques, to understand their size distribution, crystalline nature, morphology, shape, optical properties, and elemental composition. This research offers insight into the efficient photocatalytic degradation of Phenanthrene (PHE) using CdS-SnS. The CdS-SnS NPs as photocatalyst can effectively photodegrade the polycyclic aromatic hydrocarbons (PAH) such as phenanthrene under simulated solar and UV light. UV-vis spectra of these nanoparticles exhibit peaks at 365 and 546 cm-1 respectively, the mean size of the CdS-SnS NPs in DLS is determined to be 78 nm. The CdS-SnS stretching frequency was observed at wave numbers below 700 cm-1 , the absorption peak at 1165.35 cm-1 indicates the presence of C-N stretch or CS bond of thiourea, while the peak at 1373.13 cm-1 corresponds to the tris-amine C-N stretch in FT-IR. EDAX revealed the presence of elemental Cd and Sn oxides. The antimicrobial studies showed that the CdS-SnS NPs at the concentration of 150 μg/mL, exhibit maximum inhibition (15 ± 1.25 mm) against the strains P. mirabilis followed by S. epidermidis and Clostridium spp. Among fungal strains Colletotrichum spp. exhibits the maximum zone of inhibition (9 ± 0.25). This research also observed the cytotoxic effects of CdS-SnS NPs on HepG2 and ZF4 cells. HepG2 cells exhibited 50% inhibition at 50 μg/mL and 70% inhibition at 100 μg/mL concentrations, while ZF4 cells exhibited 50% inhibition at 50 μg/mL and 78% inhibition at 100 μg/mL concentrations, respectively. The parameters like concentration of PHE, concentration of CdS-SnS NPs, pH, and sources of irradiation on batch adsorption were examined to maximize the efficiency of the photodegradation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app