Add like
Add dislike
Add to saved papers

A multimodal stacked ensemble model for cardiac output prediction utilizing cardiorespiratory interactions during general anesthesia.

Scientific Reports 2024 March 30
This study examined the possibility of estimating cardiac output (CO) using a multimodal stacking model that utilizes cardiopulmonary interactions during general anesthesia and outlined a retrospective application of machine learning regression model to a pre-collected dataset. The data of 469 adult patients (obtained from VitalDB) with normal pulmonary function tests who underwent general anesthesia were analyzed. The hemodynamic data in this study included non-invasive blood pressure, plethysmographic heart rate, and SpO2 . CO was recorded using Vigileo and EV1000 (pulse contour technique devices). Respiratory data included mechanical ventilation parameters and end-tidal CO2 levels. A generalized linear regression model was used as the metalearner for the multimodal stacking ensemble method. Random forest, generalized linear regression, gradient boosting machine, and XGBoost were used as base learners. A Bland-Altman plot revealed that the multimodal stacked ensemble model for CO prediction from 327 patients had a bias of - 0.001 L/min and - 0.271% when calculating the percentage of difference using the EV1000 device. Agreement of model CO prediction and measured Vigileo CO in 142 patients reported a bias of - 0.01 and - 0.333%. Overall, this model predicts CO compared to data obtained by the pulse contour technique CO monitors with good agreement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app