Add like
Add dislike
Add to saved papers

Removal of perfluoroalkyl acids (PFAAs) from aqueous solution by water hyacinth (Eichhornia crassipes): Uptake, accumulation, and translocation.

Although Eichhornia crassipes, commonly known as water hyacinth, has been widely used in wastewater treatment, further investigations are still needed to explore the removal efficiency of perfluoroalkyl acids (PFAAs) from the aqueous environment using this floating aquatic plant. In this study, a hydroponic experiment was conducted to assess accumulation, bioconcentration factors (BCFs), translocation factors (TFs), and removal rates of eight PFAAs by water hyacinth. The obtained results indicated that all PFAAs, including five perfluoroalkyl carboxylic acids (PFCAs) with chain lengths C4-C8 and three perfluoroalkyl sulfonic acids (PFSAs) with C4, C6, and C8, were readily accumulated in water hyacinth. Throughout the duration of the experiment, there was a noticeable increase in PFAA concentrations and BCF values for different plant parts. For the root, PFAAs with more carbon numbers showed a higher uptake than the shorter homologues, with PFSAs being more readily accumulated compared to PFCAs with the same carbon number in the molecules. In contrast, the levels of long-chain PFAAs were comparatively lower than those of short-chain substances in the stem and leaf. Notably, PFAAs with less carbon numbers, like PFPeA, PFBA, and PFBS, showed a remarkable translocation from the root to the stem and leaf with TFs >1. For the whole plant, no significant correlation was found between BCFs and organic carbon-water partition coefficients (Koc ), octanol-water partition coefficients (Kow ), membrane-water distribution coefficients (Dmw ), or protein-water distribution coefficients (Dpw ). The removal rates of PFAAs ranged from 40.3 to 63.5 % throughout the three weeks of the experiment while the removal efficiencies varied from 48.9 % for PFHxS to 82.6 % for PFPeA in the last week.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app