Add like
Add dislike
Add to saved papers

Anomalous Detachment Behavior and Directional Reconstruction Regulation of Leaching-Type Precatalysts for Industrial Water Electrolyzers.

Advanced Materials 2024 March 30
Current reconstruction chemistry studies are mainly operated at the laboratory scale, where the operating parameters are different from those used in industrial water electrolyzers. This gap leads to unclear reconstruction behaviors under industrial conditions and constrains the application of catalysts. Here, this work presents a new reconstruction mechanism and anomalous detachment phenomena observed in leaching-type oxygen-evolving precatalysts under industrial conditions, different from the reported results obtained under laboratory conditions. The identified detachment issues are closely linked to the production of a potassium salt separate phase, which proves sensitive to the local environment, and its instability easily leads to catalyst stripping from the substrate. By establishing detachment critical point and operating parameter-detachment correlation, a targeted reconstruction strategy is proposed to achieve smooth ligand leaching and effectively solve the detachment issue. Theoretical analyses validate the dual-site regulation in directionally reconstructed catalysts with optimized intermediate adsorption. Under industrial conditions, the coupled electrolyzer delivers an industrial-level current density at low cell voltage with prolonged durability, 1 A cm-2 at 2 V for over 340 h. This work bridges the gap of leaching-type precatalysts between laboratory test conditions and industrial operating conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app