Add like
Add dislike
Add to saved papers

Identification of flavor peptides based on virtual screening and molecular docking from Hypsizygus marmoreuss.

Food Chemistry 2024 March 20
Hypsizygus marmoreuss is an under-explored source of flavor peptides that can enhance the flavor of NaCl or MSG, allowing products to be reformulated in line with reduction policies. This study utilized advanced techniques, including UPLC-Q-TOF MS/MS and molecular docking, to identify H. marmoreuss peptides. Sensory evaluations revealed 10 peptides with pronounced umami flavors and seven with dominantly salty tastes. VLPVPQK scored highest for umami intensity (5.2), and EGNPAHQK for salty intensity (6.2). Further investigation influenced by 0.35 % MSG or 0.35 % NaCl exposed peptides with elevated umami and salty thresholds. LDSPATPEK, VVEGEPSLK, and QKLPEKPER had umami-enhancing thresholds of 0.18, 0.18, and 0.35 mM, while LDSPATPEK and VVEGEPSLK had similar thresholds for salt (0.09 mM). Molecular docking revealed that taste receptor proteins interacted with umami peptides through hydrogen, carbon-hydrogen, alkyl, and van der Waals forces. Specific amino acids in the umami receptor T1R1 had roles in bonding with umami peptides through hydrogen and carbon-hydrogen interactions. In conclusion, molecular docking proved to be an effective and efficient method for flavor peptide screening. Further, this study demonstrated that flavor peptides from H. marmoreuss had the capacity to enhance NaCl and MSG flavours and might be useful tools for reformulation, reducing salt and MSG contents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app