Add like
Add dislike
Add to saved papers

Curcumin alleviates cecal oxidative injury in diquat-induced broilers by regulating the Nrf2/ARE pathway and microflora.

Poultry Science 2024 March 13
This study evaluated the alleviative effect of curcumin (CUR) on the diquat (DQ)-induced cecal injury in broilers. A total of 320 one-day-old Cobb broilers were selected and randomly divided into 4 treatments, namely control, DQ, CUR 100, and CUR150 groups. The control and DQ groups were fed a basal diet, while the CUR 100 and CUR150 groups were fed the basal diet supplemented with 100 and 150 mg/kg CUR, respectively. Each group had 8 replicates, with 10 broilers per replicate. On day 21 of the experiment, 1 broiler was selected from each replicate and intraperitoneally injected 20 mg/kg body weight of DQ for DQ, CUR 100, and CUR 150 groups. Broilers in control group received equivalent volume of saline. Broilers were euthanized 48h postinjection for tissue sampling. The results showed that DQ injection could cause oxidative stress and inflammatory reactions in the cecum, affecting the fatty acid production and flora structure, thus leading to cecum damage. Compared with the DQ group, the activity of superoxide dismutase, the level of interleukin 10, acetic acid, and total volatile fatty, and the abundance of nuclear factor E2-related factor 2, copper and zinc superoxide dismutase and catalase mRNA in the cecal mucosa of broilers in the CUR group increased significantly (P < 0.05). However, the levels of malondialdehyd, reactive oxygen species, tumor necrosis factor-alpha, and the expression of cysteine-aspartic acid protease-3 and tumor necrosis factor-alpha decreased significantly (P < 0.05) in the CUR group. In addition, CUR treatment alleviated the damage to the cecum and restored the flora structure, and Lactobacillus and Lactobacillaceae promoted the alleviative effect of CUR on DQ. In summary, CUR could alleviate the cecal injury caused by DQ-induced oxidative damage and inflammatory reactions by regulating the Nrf2-ARE signaling pathway and intestinal flora, thus protecting the cecum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app