Journal Article
Review
Add like
Add dislike
Add to saved papers

Therapeutic Applications of Stem Cell-Derived Exosomes.

Exosomes are extracellular vesicles of endosomal origin, ranging from 30 to 150 nm in diameter, that mediate intercellular transfer of various biomolecules, such as proteins, lipids, nucleic acids, and metabolites. They modulate the functions of recipient cells and participate in diverse physiological and pathological processes, such as immune responses, cell-cell communication, carcinogenesis, and viral infection. Stem cells (SCs) are pluripotent or multipotent cells that can differentiate into various cell types. SCs can also secrete exosomes, which exhibit remarkable therapeutic potential for various diseases, especially in the field of regenerative medicine. For example, exosomes derived from mesenchymal stem cells (MSCs) contain proteins, lipids, and miRNAs that can ameliorate endocrine disorders, such as diabetes and cancer. Exosomes from SCs (sc-exos) may offer similar advantages as SCs, but with reduced risks and challenges. Sc-exos have lower tumorigenicity, immunogenicity, and infectivity. They can also deliver drugs more efficiently and penetrate deeper into tissues. In this review, we provide an overview of the recent advances in sc-exos and their therapeutic applications in various diseases, such as diabetes and cancer. We also elucidate how the biological effects of sc-exos depend on their molecular composition. We also address the current challenges and future directions of using sc-exos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app