Add like
Add dislike
Add to saved papers

Formation of Pre-PCTA/DT Intermediates from 2-Chlorothiophenol on Silica Clusters: A Quantum Mechanical Study.

Silica (SiO2 ), accounting for the main component of fly ash, plays a vital role in the heterogeneous formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs) in high-temperature industrial processes. Silica clusters, as the basic units of silica, provide reasonable models to understand the general trends of complex surface reactions. Chlorothiophenols (CTPs) are the most crucial precursors for PCTA/DT formation. By employing density functional theory, this study examined the formation of 2-chlorothiophenolate from 2-CTP adsorbed on the dehydrated silica cluster ((SiO2 )3 ) and the hydroxylated silica cluster ((SiO2 )3 O2 H4 ). Additionally, this study investigated the formation of pre-PCTA/DTs, the crucial intermediates involved in PCTA/DT formation, from the coupling of two adsorbed 2-chlorothiophenolates via the Langmuir-Hinshelwood (L-H) mechanism and the coupling of adsorbed 2-chlorothiophenolate with gas-phase 2-CTP via the Eley-Rideal (E-R) mechanism on silica clusters. Moreover, the rate constants for the main elementary steps were calculated over the temperature range of 600-1200 K. Our study demonstrates that the 2-CTP is more likely to adsorb on the termination of the dehydrated silica cluster, which exhibits more effective catalysis in the formation of 2-chlorothiophenolate compared with the hydroxylated silica cluster. Moreover, the E-R mechanism mainly contributes to the formation of pre-PCTAs, whereas the L-H mechanism is prone to the formation of pre-PCDTs on dehydrated and hydroxylated silica clusters. Silica can act as a relatively mild catalyst in facilitating the heterogeneous formation of pre-PCTA/DTs from 2-CTP. This research provides new insights into the surface-mediated generation of PCTA/DTs, further providing theoretical foundations to reduce dioxin emission and establish dioxin control strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app