Journal Article
Review
Add like
Add dislike
Add to saved papers

State-of-the-Art Differentiation Protocols for Patient-Derived Cardiac Pacemaker Cells.

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes raise the possibility of generating pluripotent stem cells from a wide range of human diseases. In the cardiology field, hiPSCs have been used to address the mechanistic bases of primary arrhythmias and in investigations of drug safety. These studies have been focused primarily on atrial and ventricular pathologies. Consequently, many hiPSC-based cardiac differentiation protocols have been developed to differentiate between atrial- or ventricular-like cardiomyocytes. Few protocols have successfully proposed ways to obtain hiPSC-derived cardiac pacemaker cells, despite the very limited availability of human tissues from the sinoatrial node. Providing an in vitro source of pacemaker-like cells would be of paramount importance in terms of furthering our understanding of the mechanisms underlying sinoatrial node pathophysiology and testing innovative clinical strategies against sinoatrial node dysfunction (i.e., biological pacemakers and genetic- and pharmacological- based therapy). Here, we summarize and detail the currently available protocols used to obtain patient-derived pacemaker-like cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app