Add like
Add dislike
Add to saved papers

Differential Impact of CD43 and CD28 on T-Cell Differentiation Depending on the Order of Engagement with the TCR.

The combination of signals from the T-cell receptor (TCR) and co-stimulatory molecules triggers transcriptional programs that lead to proliferation, cytokine secretion, and effector functions. We compared the impact of engaging the TCR with CD28 and/or CD43 at different time points relative to TCR engagement on T-cell function. TCR and CD43 simultaneous engagement resulted in higher CD69 and PD-1 expression levels than in TCR and CD28-stimulated cells, with a cytokine signature of mostly effector, inflammatory, and regulatory cytokines, while TCR and CD28-activated cells secreted all categories of cytokines, including stimulatory cytokines. Furthermore, the timing of CD43 engagement relative to TCR ligation, and to a lesser degree that of CD28, resulted in distinct patterns of expression of cytokines, chemokines, and growth factors. Complete cell activation was observed when CD28 or CD43 were engaged simultaneously with or before the TCR, but ligating the TCR before CD43 or CD28 failed to complete a cell activation program regarding cytokine secretion. As the order in which CD43 or CD28 and the TCR were engaged resulted in different combinations of cytokines that shape distinct T-cell immune programs, we analyzed their upstream sequences to assess whether the combinations of cytokines were associated with different sets of regulatory elements. We found that the order in which the TCR and CD28 or CD43 are engaged predicts the recruitment of specific sets of chromatin remodelers and TFSS, which ultimately regulate T-cell polarization and plasticity. Our data underscore that the combination of co-stimulatory molecules and the time when they are engaged relative to the TCR can change the cell differentiation program.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app