Add like
Add dislike
Add to saved papers

Large Cyclability of Elastocaloric Effect in Highly Porous Ni-Fe-Ga Foams.

Materials 2024 March 10
Solid-state refrigeration based on elastocaloric materials (eCMs) requires reversibility and repeatability. However, the intrinsic intergranular brittleness of ferromagnetic shape memory alloys (FMSMAs) limits fatigue life and, thus, is the crucial bottleneck for its industrial applications. Significant cyclic stability of elastocaloric effects (eCE) via 53% porosity in Ni-Fe-Ga FMSMA has already been proven. Here, Ni-Fe-Ga foams (single-/hierarchical pores) with high porosity of 64% and 73% via tailoring the material's architecture to optimize the eCE performances are studied. A completely reversible superelastic behavior at room temperature (297 K) is demonstrated in high porosity (64-73%) Ni-Fe-Ga foams with small stress hysteresis, which is greatly conducive to durable fatigue life. Consequentially, hierarchical pore foam with 64% porosity exhibits a maximum reversible ∆ Tad of 2.0 K at much lower stress of 45 MPa with a large COPmat of 34. Moreover, it shows stable elastocaloric behavior (Δ Tad = 2.0 K) over >300 superelastic cycles with no significant deterioration. The enhanced eCE cyclability can be attributed to the pore hierarchies, which remarkably reduce the grain boundary constraints and/or limit the propagation of cracks to induce multiple stress-induced martensitic transformations (MTs). Therefore, this work paves the way for designing durable fatigue life FMSMAs as promising eCMs by manipulating the material architectures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app