Add like
Add dislike
Add to saved papers

Circulating Exosomes from Septic Mice Activate NF-κB/MIR17HG Pathway in Macrophages.

Biomedicines 2024 Februrary 28
Circulating exosomes derived from polymicrobial sepsis contain various non-coding RNAs and proteins. Isobaric tags for a relative or absolute quantitation proteomic analysis of the exosomal content revealed 70 dysregulated proteins in the circulating exosomes from septic mice. Next-generation sequencing was used to profile the long non-coding RNA expression in primary cultured macrophages treated with exosomes obtained from the blood of septic C57BL/6 mice, and it was discovered that the nuclear factor-kappa B (NF-κB)/miR-17-92a-1 cluster host gene (MIR17HG) pathways were activated in the macrophages. The inhibition of MIR17HG expression by RNA interference resulted in significantly decreased cell viability. RNA pull-down assays of MIR17HG revealed that ten protein targets bind to MIR17HG. Interaction networks of proteins pulled down by MIR17HG were constructed using GeneMANIA, and their functions were mainly involved in ribonucleoprotein granules, type I interferons, the regulation of organelle assembly, the biosynthesis of acetyl coenzyme A, as a signal transducer and activator of transcription (STAT) protein phosphorylation, and mRNA splicing. Furthermore, RNA interference inhibited MIR17HG expression, resulting in significantly decreased cell survival. In conclusion, this work discovered considerable MIR17HG overexpression in macrophages treated with circulating exosomes from sepsis-affected animals. This study's findings assist us in comprehending the role of exosomes in modulating inflammatory responses and mediating pathogenic pathways in macrophages during sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app