Add like
Add dislike
Add to saved papers

Decellularized human amniotic membrane scaffolds: influence on the biological behavior of dental pulp stem cells.

BMC Oral Health 2024 March 28
OBJECTIVE: The objective of this study was to assess the characterization of human acellular amniotic membrane (HAAM) using various decellularization methods and their impact on the proliferation and differentiation of human dental pulp stem cells (DPSCs). The goal was to identify scaffold materials that are better suited for pulp regeneration.

METHODS: Six different decellularization methods were used to generate the amniotic membranes. The characteristics of these scaffolds were examined through hematoxylin and eosin (H&E) staining, scanning electron microscopy (SEM), and immunohistofluorescence staining (IHF). The DPSCs were isolated, cultured, and their capacity for multidirectional differentiation was verified. The third generation (P3) DPSCs, were then combined with HAAM to form the decellularized amniotic scaffold-dental pulp stem cell complex (HAAM-DPSCs complex). Subsequently, the osteogenic capacity of the HAAM-DPSCs complex was evaluated using CCK8 assay, live-dead cell staining, alizarin red and alkaline phosphatase staining, and real-time quantitative PCR (RT-PCR).

RESULTS: Out of the assessed decellularization methods, the freeze-thaw + DNase method and the use of ionic detergent (CHAPS) showed minimal changes in structure after decellularization, making it the most effective method. The HAAM-DPSCs complexes produced using this method demonstrated enhanced biological properties, as indicated by CCK8, alizarin red, alkaline phosphatase staining, and RT-PCR.

CONCLUSION: The HAAM prepared using the freeze-thaw + DNase method and CHAPS methods exhibited improved surface characteristics and significantly enhanced the proliferation and differentiation capacity of DPSCs when applied to them. The findings, therefore demonstrate the capacity for enhanced pulp regeneration therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app