Add like
Add dislike
Add to saved papers

Mechanical properties of native and decellularized reproductive tissues: insights for tissue engineering strategies.

Scientific Reports 2024 March 29
Understanding the mechanical properties and porosity of reproductive tissues is vital for regenerative medicine and tissue engineering. This study investigated the changes in Young's modulus (YM), storage modulus (E'), loss modulus (E"), and porosity of native and decellularized bovine reproductive tissues during the estrous cycle. Testis tunica albuginea had significantly higher YM, E', and E" than the inner testis, indicating greater stiffness and viscoelasticity. Endometrium showed no distinct differences in YM, E', or E" across the estrous cycle or between horns. Ovaries exhibited significant variations in YM, E', E", and porosity, with higher YM and E' in the ipsilateral cortex and medulla during the luteal phase. Decellularized ovarian tissues displayed increased porosity. The oviduct displayed no significant differences in YM or E' in the isthmus, but the contralateral ampulla had reduced YM and E' in the luteal phase. These findings offer valuable insights into the dynamic mechanical properties and porosity of reproductive tissues, facilitating the development of biomimetic scaffolds for tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app