Add like
Add dislike
Add to saved papers

Redox mediator chlorophyll accelerates low-temperature biological denitrification with responses of extracellular polymers and changes in microbial community composition.

Low temperatures limit the denitrification wastewater in activated sludge systems, but this can be mitigated by addition of redox mediators (RMs). Here, the effects of chlorophyll (Chl), 1,2-naphthoquinone-4-sulfonic acid (NQS), humic acid (HA), and riboflavin (RF), each tested at three concentrations, were compared for denitrification performance at low temperature, by monitoring the produced extracellular polymeric substances (EPS), and characterizing microbial communities and their metabolic potential. Chl increased the denitrification rate most, namely 4.12-fold compared to the control, followed by NQS (2.62-fold increase) and HA (1.35-fold increase), but RF had an inhibitory effect. Chl promoted the secretion of tryptophan-like and tyrosine-like proteins in the EPS and aided the conversion of protein from tightly bound EPS into loosely bound EPS, which improved the material transfer efficiency. NQS, HA, and RF also altered the EPS components. The four RMs affected the microbial community structure, whereby both conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT) were key taxa. Among them, CRAT members interacted most with the other taxa. Chl promoted Flavobacterium enrichment in low-temperature activated sludge systems. In addition, Chl promoted the abundance of nitrate reduction genes narGHI and napAB and of nitrite reduction genes nirKS, norBC, and nosZ. Moreover, Chl increased abundance of genes involved in acetate metabolism and in the TCA cycle, thereby improving carbon source utilization. This study increases our understanding of the enhancement of low-temperature activated sludge by RMs, and demonstrates positive effects, in particular by Chl.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app