Add like
Add dislike
Add to saved papers

Evaluation the stress distribution in root canals by 3D finite element analysis after the materials used in reattaching the vertically root fractured fragments.

The aim was to evaluate the effect of stress distribution on vertical, horizontal, and oblique forces on the tooth model after reattaching the fragments of the maxillary incisor with vertical root fracture (VRF) using different materials, by 3D finite element analysis (FEA). Tooth with a root canal, spongious, and cortical bone models were designed. VRF was modeled on a tooth with 4 different re-attachment models: Group 1: dual-cure cement (DC)+fiber reinforced composite (FRC), Group 2: DC+polyethylene fiber, Group 3: DC+glass fiber, and Group 4:DC. 100 N force was applied in 3 different directions. Maximum principal stresses (σmax) of dentin, and re-attachment materials were evaluated on colored images. The highest σmax values ​​were on the repair materials under vertical forces for Groups 1 and 4, respectively; Groups 2 and 3 showed similarity. The highest σmax values in repair materials under horizontal and oblique forces were observed in Group 3 however the lowest σmax values in repair materials under oblique and horizontal forces were observed in Group 1. The stress values ​​on repair materials gradually increased respectively starting from horizontal to vertical. As the elasticity modulus of the repair materials increased, the stress values ​​on root dentin increased. Through all force directions, except vertical forces, lower stress values were observed with FRC. The fracture resistance was bigger when using solely FRC or dual-cure resin cement in comparison to fiber-supported designs. Adding polyethylene fiber to re-restorations decreased stress values ​​compared to glass fiber addition. Therefore, when adding fibers, polyethylene fiber will be advantageous.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app