Add like
Add dislike
Add to saved papers

Binocular luster elicited by isoluminant chromatic stimuli relies on mechanisms similar to those in the achromatic case.

Journal of Vision 2024 March 2
The phenomenon of binocular luster can be evoked by simple dichoptic center-surround stimuli showing a luminance contrast difference between the eyes. Previous findings support the idea that this phenomenon is mediated by a low-level conflict mechanism that integrates the monocular signals from different types of contrast detector cells. Also, isoluminant stimuli with different chromatic contrasts between eyes can trigger sensations of luster. Here, we investigate whether the lustrous impression in such purely chromatic stimuli depends on interocular contrast differences and in particular on interocular contrast polarity pairings in a similar way as in the achromatic case. In our experiments, we measured the magnitude of the lustrous response using a series of isoluminant dichoptic center-ring-surround stimuli with varying ring width whose chromatic properties were varied along the red-green and blue-yellow cardinal directions. The trends in the data were very similar to those of our former study with achromatic stimuli, indicating similar mechanisms in both cases. The empirical luster data could also be predicted fairly well by a chromatic version of our interocular conflict model (with overall R2 values between 0.577 and 0.639), for which two different receptive field models were used, simulating the behavior of color-sensitive double-opponent cells in V1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app