Add like
Add dislike
Add to saved papers

Pure elongation flow of an electrorheological fluid: insights on wall slip from electrorheology.

Soft Matter 2024 March 28
In this work we study the pure elongation flow behavior of an electrorheological (ER) fluid as a model soft-jammed system, wherein the extent of jamming is controlled by an externally applied electric-field. More specifically, a pure elongation flow has been achieved by facilitating significant slip at the contact between the material and rheometer-plate while pulling it with constant pulling velocity under a constant external electric-field. The normal force exerted by the top plate on the material was measured as a function of gap during the flow for various combinations of electric-field strength and pulling velocity. For any force-gap curve, at first force increases to the maximum (region-I), then it decreases with gap (region-II). In region-II, the normal force-gap curve shifts to higher gaps with increasing electric-field strength for any given pulling velocity. Interestingly, these curves (region-II) demonstrate gap-electric field-velocity superposition, manifesting the self-similar nature of the flow. Finally, we have modeled the flow curves using a slip-layer model, which rendered a remarkable prediction of flow curves and also led to estimation of slip-layer thickness. We observed that slip-layer thickness decreases with increasing magnitude of electric field for a given pulling velocity, which suggests that the extent of jamming plays a crucial role in slip dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app