Add like
Add dislike
Add to saved papers

Electrospinning Chitosan/Fe-Mn Nanofibrous Composite for Efficient and Rapid Removal of Arsenite from Water.

Toxics 2024 March 22
Efficient removal of extremely mobile and toxic As(III) from water is a challenging but critical task. Herein, we developed a functionalized sorbent of chitosan nanofiber with iron-manganese (Fe-Mn@CS NF) using a one-step hybrid electrospinning approach to remove trace As(III) from water. Batch adsorption studies were performed to determine the adsorption efficiency under a variety of conditions, including contact time, starting concentration of As(III), ionic strength, and the presence of competing anions. The experimental results demonstrated that the concentration of As(III) dropped from 550 to less than 1.2 µg/L when using 0.5 g/L Fe-Mn@CS NF. This demonstrates the exceptional adsorption efficiency (99.8%) of Fe-Mn@CS NF for removing As(III) at pH 6.5. The kinetic tests revealed that the adsorption equilibrium was reached in 2.6 h, indicating a quick uptake of As(III). The ionic strength effect analysis showed that the adsorbed As(III) formed inner-sphere surface complexes with Fe-Mn@CS NF. The presence of SO4 2- or F- had a negligible impact on As(III) uptake, while the presence of PO4 3- impeded As(III) absorption by competing for adsorption sites. The exhausted sorbent could be effectively regenerated with a dilute NaOH solution. Even after 10 cycles of regenerating Fe-Mn@CS NF, the adsorption efficiency of As(III) in natural groundwater was maintained over 65%. XPS and FTIR analyses show that the presence of M-OH and C-O groups on the sorbent surface is essential for removing As(III) from water. Overall, our study highlights the significant potential of Fe-Mn@CS NF for the efficient and quick elimination of As(III) from water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app