Add like
Add dislike
Add to saved papers

Synthesis and Unique Behaviors of High-Purity HEA Nanoparticles Using Femtosecond Laser Ablation.

Nanomaterials 2024 March 22
High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions. This study focuses on the synthesis of high-purity HEA nanoparticles using the method of femtosecond laser ablation synthesis in liquid. The use of ultrashort energy pulses in femtosecond lasers enables uniform ablation of materials at significantly lower power levels compared to longer pulse or continuous pulse lasers. We investigate how various femtosecond laser parameters affect the morphology, phase, and other characteristics of the synthesized nanoparticles. An innovative aspect of our solution is its ability to rapidly generate multi-component nanoparticles with a high fidelity as the input multi-component target material at a significant yielding rate. Our research thus focuses on a novel synthesis of high-entropy alloying CuCoMn1.75 NiFe0.25 nanoparticles. We explore the characterization and unique properties of the nanoparticles and consider their electrocatalytic applications, including high power density aluminum air batteries, as well as their efficacy in the oxygen reduction reaction (ORR). Additionally, we report a unique nanowire fabrication phenomenon achieved through nanojoining. The findings from this study shed light on the potential of femtosecond laser ablation synthesis in liquid (FLASiL) as a promising technique for producing high-purity HEA nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app