Add like
Add dislike
Add to saved papers

Discovery of Novel Potential Insecticide-Resistance Mutations in Spodoptera frugiperda .

Insects 2024 March 12
The fall armyworm (FAW), Spodoptera frugiperda , is a worldwide agricultural pest that invaded China in 2018, and has developed resistance to multiple insecticides. The evolution of insecticide resistance is facilitated by mutations of target genes responsible for conferring resistance. In this study, amplicon sequencing analyzed 21 sites in six resistance genes. In addition to known mutations, unknown variants were also found, including novel variants: F290C ( ace-1 gene, 0.1% frequency), I1040T/V ( CHSA gene, 0.1% frequency), A309T ( GluCl gene, 0.1% frequency), and I4790T/V ( RyR gene, 0.1% frequency). Additionally, molecular docking was employed to investigate the impact of the aforementioned new mutations on insecticide binding to proteins. The analyses indicated that the binding abilities were reduced, similar to the resistance mutations that were reported, implying these novel mutations may confer transitional resistance. This study may provide a foundation for understanding the functions of these novel mutations in the evolutionary processes that drive the emergence of insecticide resistance in this invasive species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app