Add like
Add dislike
Add to saved papers

Effects of Chronic Sleep Restriction on Transcriptional Sirtuin 1 Signaling Regulation in Male Mice White Adipose Tissue.

Chronic sleep restriction (CSR) is a prevalent issue in modern society that is associated with several pathological states, ranging from neuropsychiatric to metabolic diseases. Despite its known impact on metabolism, the specific effects of CSR on the molecular mechanisms involved in maintaining metabolic homeostasis at the level of white adipose tissue (WAT) remain poorly understood. Therefore, this study aimed to investigate the influence of CSR on sirtuin 1 (SIRT1) and the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway in the WAT of young male mice. Both genes interact with specific targets involved in multiple metabolic processes, including adipocyte differentiation, browning, and lipid metabolism. The quantitative PCR (qPCR) results demonstrated a significant upregulation of SIRT-1 and some of its target genes associated with the transcriptional regulation of lipid homeostasis (i.e., PPARα, PPARγ, PGC-1α, and SREBF) and adipose tissue development (i.e., leptin, adiponectin) in CSR mice. On the contrary, DNA-binding transcription factors (i.e., CEBP-β and C-myc), which play a pivotal function during the adipogenesis process, were found to be down-regulated. Our results also suggest that the induction of SIRT1-dependent molecular pathways prevents weight gain. Overall, these findings offer new, valuable insights into the molecular adaptations of WAT to CSR, in order to support increased energy demand due to sleep loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app