Read by QxMD icon Read

Current Issues in Molecular Biology

Kevin R Porter, Kanakatte Raviprakash
The promise of DNA vaccines is as compelling today as it was more than a decade ago. Ease of manufacture, stability at ambient temperatures without the need for a cold chain and its ability to mimic natural infections and elicit appropriate immune responses makes this vaccine platform extremely attractive. Although, human clinical trials of DNA vaccines have yielded less than optimal results, the approval and licensing of a few veterinary vaccines is testimony to the proof-of-concept and the hope that licensed DNA vaccines for human use may not be too far away...
November 10, 2016: Current Issues in Molecular Biology
Mustafa Diken, Lena M Kranz, Sebastian Kreiter, Ugur Sahin
mRNA vaccines are finally ready to assume their rightful place at the forefront of nucleic acid- based vaccines. Major achievements within the last two decades have turned this highly versatile molecule into a safe and very attractive pharmaceutical platform that combines many positive attributes able to address a broad range of diseases, including cancer. The simplicity of mRNA vaccines greatly reduces complications generally associated with the production of biological vaccines. Intrinsic costimulatory and inflammatory triggers in addition to the provision of the antigenic information makes mRNA an all- in-one molecule that does not need additional adjuvants and that does not pose the risk of genomic integration...
November 1, 2016: Current Issues in Molecular Biology
Zaheer Ahmed, Zahid Hussain Shah, Hafiz Mamoon Rehman, Khurram Shahzad, Ihsanullah Daur, Abdalla Elfeel, Mahmood Ul Hassan, Ali Khalid Elsafori, Seung Hwan Yang, Gyuhwa Chung
For human food security, the preservation of 7.4 million ex-situ germplasm is a global priority. However, ex-situ-conserved seeds are subject to aging, which reduces their viability and ultimately results in the loss of valuable genetic material over long periods. Recent progress in seed biology and genomics has revealed new opportunities to improve the long-term storage of ex-situ seed germplasm. This review summarizes the recent improvements in seed physiology and genomics, with the intention of developing genomic tools for evaluating seed aging...
November 1, 2016: Current Issues in Molecular Biology
Anne Ingeborg Myhr
DNA vaccines have great potential as preventive or therapeutic vaccines against viral, bacterial, or parasitic diseases as well as cancer, and may also be used as gene therapy products. Although many human and veterinary DNA vaccines have been investigated in laboratory trials, only four of these have been approved for commercial use. In this paper an overview of the regulatory requirements for the development of DNA vaccines is given. The regulatory process in EU and USA is described. A discussion concerning the relevance of national regulations on gene technology is included...
October 5, 2016: Current Issues in Molecular Biology
Manuel E Patarroyo, Jorge Aza-Conde, Armando Moreno-Vranich, Laura Pabón, Yahson Varela, Manuel A Patarroyo
Like Thomas Hardy's famous novel Far from the Madding Crowd, Plasmodium falciparum parasites display their most relevant survival structures (proteins) involved in host cell invasion far away from the immune system's susceptible regions, displaying tremendous genetic variability, to attract the immune response and escape immune pressure. The 3D structure localisation of the conserved amino acid sequences of this deadly parasite's most relevant proteins involved in host cell invasion, as well as the location of the highly polymorphic, highly immunogenic regions, clearly demonstrates that such structures are far apart, sometimes 90° to 180° opposite, thereby rendering the immune response useless...
October 4, 2016: Current Issues in Molecular Biology
Zhiqiang Ma, Chao Deng, Wei Hu, Jie Zhou, Chongxi Fan, Shouyin Di, Dong Liu, Yang Yang, Dongjin Wang
Liver X receptors α (LXRα) and β (LXRβ) are essential for protection against cardiovascular diseases. LXRs are members of the nuclear receptor superfamily of DNA-binding transcription factors and act as sensors of cholesterol homeostasis. In this review, we introduce LXRs and briefly describe the roles of LXRs in reverse cholesterol transport and trans-intestinal cholesterol efflux. We discuss LXR agonists and the downstream genes of LXRs that are involved in the regulation of cholesterol transport. In addition, we describe the cardioprotective effects of LXRs against atherosclerosis, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, and myocardial hypertrophy...
September 27, 2016: Current Issues in Molecular Biology
Lei Li, Nikolai Petrovsky
Poor immunogenicity remains the single biggest obstacle to human DNA vaccines achieving their potential. Strategies to improve DNA vaccine efficacy include codon optimization, transfection reagents, electroporation, vaccine adjuvants or combination with a protein or vector boost. Increased understanding of molecular events driving innate and adaptive immune responses has assisted development of molecular adjuvants for DNA vaccine use. Such adjuvants comprise plasmid-encoded signalling molecules including cytokines, chemokines, immune costimulatory molecules, toll-like receptor agonists or inhibitors of immune suppressive pathways...
September 20, 2016: Current Issues in Molecular Biology
Melissa Lever, Eduardo L Silveira, Helder I Nakaya
DNA vaccination represents a new milestone in our technological efforts to avoid infectious diseases. Although this method of vaccination has had success in providing protection in animals, these vaccines suffer from low immunogenicity in humans. Questions remain over the molecular mechanism of DNA vaccination, the best ways in which to safely increase vaccine reactogenecity, and what biomarkers can be used as correlates of protection. Systems vaccinology, which utilizes modern experimental and computational approaches to provide an integrated view of the vaccination process, offers the potential to answer these questions...
September 20, 2016: Current Issues in Molecular Biology
Zahid Hussain Shah, Bahget T Hamooh, Ihsanullah Daur, Hafiz Mamoon Rehman, Fahad Alghabari
Various transcriptome studies have remained useful in unraveling the complexity of molecular pathways regulating the oil biochemical contents and fruit characteristics of agronomic value in olive. Genes networks associated with plant architect and abiotic stress tolerance have been constructed due to robust genomic data generated by the tools of genomics. This, familiarity will accelerate the breeding programmes in making the selection of high yielding olive genotypes promptly and efficiently. Moreover, comparative transcriptome studies for endogeneous enzymes at different expression sites explicate the contribution of various pathways in phenol and lipid oxidation in olive...
August 4, 2016: Current Issues in Molecular Biology
Min Liang, Zeshan Habib, Kaori Sakamoto, Xi Chen, Gang Cao
Tuberculosis (TB) is an ancient disease caused by Mycobacterium tuberculosis (Mtb). TB is one of the world's deadliest diseases, with one-third of infected individuals falling ill each year especially in many developing countries. Upon invading host cells, such as macrophages, Mtb can replicate in infected cells by arresting phagosome maturation and then potentially escaping into the cytosol. Host cells have a mechanism to control intracellular Mtb by inducing autophagy, which is an elaborate cellular process to target intracellular pathogens for degradation in infected cells...
July 22, 2016: Current Issues in Molecular Biology
Tereza Sovová, Gerard Kerins, Kateřina Demnerová, Jaroslava Ovesná
After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided...
June 2, 2016: Current Issues in Molecular Biology
Farman Ullah Dawar, Jiagang Tu, Muhammad Nasir Khan Khattak, Jie Mei, Li Lin
Cyclophilin A (CypA) is a key member of immunophilins that has peptidyl-prolyl cis/trans isomerase (PPIase) activity. Besides acting as a cellular receptor for immunosuppressive drug cyclosporine A (CsA), CypA is involved in various cellular activities. CypA has an important role in viral infection which either facilitates or inhibits their replication. Inhibition of CypA via inhibitors is useful for overcoming some viral infections, indicating that CypA is an attractive target for anti-viral therapy. Collectively, these facts demonstrate the critical roles of CypA in mediating or inhibiting viral infections, suggesting that CypA can be an attractive cellular target for the development of anti-viral therapy...
March 31, 2016: Current Issues in Molecular Biology
Yuwei Ren, Faheem Ahmed Khan, Nuruliarizki Shinta Pandupuspitasari, Shujun Zhang
Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges...
March 30, 2016: Current Issues in Molecular Biology
Nuruliarizki Shinta Pandupuspitasari, Faheem Ahmed Khan, Chun-Jie Huang, Xing Chen, ShuJun Zhang
The emerging role of the TREMs (Triggering Receptors Expressed by Myeloid cells) family in inflammation makes it important to explore their molecular mechanisms governing key pathways in inflammatory diseases. The TREMs family interaction with microbial products make it a strong candidate to target inflammatory diseases and raises an important question of its potential as a useful target in inflammatory diseases caused by products other than microbes, for example psoriasis. The interaction of TREMs with various immune responses can be of key importance in handling inflammatory diseases...
2016: Current Issues in Molecular Biology
Xiu-Qing Li, Tim Xing, Donglei Du
Somatic mutation of signal transduction genes or key nodes of the cellular protein network can cause severe diseases in humans but can sometimes genetically improve plants, likely because growth is determinate in animals but indeterminate in plants. This article reviews protein networks; human protein ranking; the mitogen-activated protein kinase (MAPK) and insulin (phospho- inositide 3kinase [PI3K]/phosphatase and tensin homolog [PTEN]/protein kinase B [AKT]) signaling pathways; human diseases caused by somatic mutations to the PI3K/PTEN/ AKT pathway; use of the MAPK pathway in plant molecular breeding; and protein domain evolution...
2016: Current Issues in Molecular Biology
Xiu-Qing Li
This article proposes the concept of genome network, describes different variations of the somatic genome network, and reviews the agricultural implications of such variations. All genetic materials in a cell constitute the genome network of the cell and can jointly influence the cell's function and fate. The somatic genome of a plant is the genome network of cells in somatic tissues and of nonreproductive cells in pollen and ovules. Somatic genome variation (SGV, approximately equivalent to somagenetic variation) occurs at multiple levels, including stoichiometric, ploidy, and sequence variations...
2016: Current Issues in Molecular Biology
Muhammad Jamal, Faheem Ahmed Khan, Lin Da, Zeshan Habib, Jinxia Dai, Gang Cao
CRISPR/Cas, a microbial adaptive immune system, has recently been reshaped as a versatile genome editing approach, endowing genome engineering with high efficiency and robustness. The DNA endonuclease Cas, a component of CRISPR system, is directed to specific target within genomes by guide RNA (gRNA) and performs gene editing function. However, the system is still in its infancy and facing enormous challenges such as off-target mutation. Lots of attempts have been made to overcome such off-targeting and proven to be effective...
2016: Current Issues in Molecular Biology
Marwan Diapari
It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind...
2016: Current Issues in Molecular Biology
Dharani D Burra, Ramesh R Vetukuri, Svante Resjö, Laura J Grenville-Briggs, Erik Andreasson
The oomycetes include some of the most devastating plant pathogens. In this review we discuss the latest results from oomycete and plant studies with emphasis on interaction studies. We focus on the outcomes of RNAseq and proteomics studies and some pitfalls of these approaches. Both pathogenic interactions and biological control are discussed. We underline the usefulness of studies at several levels of complexity from studies of one organism, up to two or more and within agricultural fields (managed settings) up to wild ecosystems...
2016: Current Issues in Molecular Biology
Vicent Arbona, Aurelio Gómez-Cadenas
Plants are continuously exposed to the attack of invasive microorganisms, such as fungi or bacteria, and also viruses. To fight these attackers, plants develop different metabolic and genetic responses whose final outcome is the production of either toxic compounds that kill the pathogen or deter its growth, and/or semiotic molecules that alert other individuals from the same plant species. These molecules are derived from the secondary metabolism and their production is induced upon detection of a pathogen-associated molecular pattern (PAMP)...
2016: Current Issues in Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"