Add like
Add dislike
Add to saved papers

Leveraging Deep Learning for Fine-Grained Categorization of Parkinson's Disease Progression Levels through Analysis of Vocal Acoustic Patterns.

Bioengineering 2024 March 22
Speech impairments often emerge as one of the primary indicators of Parkinson's disease (PD), albeit not readily apparent in its early stages. While previous studies focused predominantly on binary PD detection, this research explored the use of deep learning models to automatically classify sustained vowel recordings into healthy controls, mild PD, or severe PD based on motor symptom severity scores. Popular convolutional neural network (CNN) architectures, VGG and ResNet, as well as vision transformers, Swin, were fine-tuned on log mel spectrogram image representations of the segmented voice data. Furthermore, the research investigated the effects of audio segment lengths and specific vowel sounds on the performance of these models. The findings indicated that implementing longer segments yielded better performance. The models showed strong capability in distinguishing PD from healthy subjects, achieving over 95% precision. However, reliably discriminating between mild and severe PD cases remained challenging. The VGG16 achieved the best overall classification performance with 91.8% accuracy and the largest area under the ROC curve. Furthermore, focusing analysis on the vowel /u/ could further improve accuracy to 96%. Applying visualization techniques like Grad-CAM also highlighted how CNN models focused on localized spectrogram regions while transformers attended to more widespread patterns. Overall, this work showed the potential of deep learning for non-invasive screening and monitoring of PD progression from voice recordings, but larger multi-class labeled datasets are needed to further improve severity classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app