Add like
Add dislike
Add to saved papers

Sensing Characteristics of SARS-CoV-2 Spike Protein Using Aptamer-Functionalized Si-Based Electrolyte-Gated Field-Effect Transistor (EGT).

Biosensors 2024 Februrary 27
The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection (LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity, respectively. To analyze the sensing responses of EGT in detecting the aptamer-SARS-CoV-2 spike protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential and an effective capacitance of the functionalized layer component was employed. The aptamer-functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution. These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2 spike proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app