Add like
Add dislike
Add to saved papers

Characterization of the in vivo transient responses of the femoral cartilage by means of quantitative ultrasound imaging techniques.

BACKGROUND: Quantitative ultrasound (QUS) techniques are new diagnostic tools able to identify changes in structural and material properties of the investigated tissue. For the first time, we evaluated the capability of QUS techniques in determining the in vivo transient changes in knee joint cartilage after a stressful task.

METHODS: An ultrasound scanner collecting B-mode and radiofrequency data simultaneously was used to collect data from the femoral cartilage of the right knee in 15 participants. Cartilage thickness (CTK), ultrasound roughness index (URI), average magnitude ratio (AMR), and Nakagami parameters (NA) were evaluated before, immediately after and every 5 min up to 45 min a stressful task (30 min of running on a treadmill with a negative slope of 5%).

RESULTS: CTK was affected by time (main effect: p < 0.001). Post hoc test showed significant differences with CTK at rest, which were observed up to 30 min after the run. AMR and NA were affected by time (p < 0.01 for both variables), while URI was unaffected by it. For AMR, post hoc test showed significant differences with rest values in the first 35 min of recovery, while NA was increased compared to rest values in all time points.

CONCLUSION: Data suggest that a single running trial is not able to modify the integrity of the femoral cartilage, as reported by URI data. In vivo evaluation of QUS parameters of the femoral cartilage (NA, AMR, and URI) are able to characterize changes in cartilage properties over time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app